Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1161420200230030233
Journal of Medicinal Food
2020 Volume.23 No. 3 p.233 ~ p.241
Eriocitrin Improves Adiposity and Related Metabolic Disorders in High-Fat Diet-Induced Obese Mice
Kwon Eun-Young

Choi Myung-Sook
Abstract
Eriocitrin (EC) is an abundant flavonoid in lemons, which is known as a strong antioxidant agent. This study investigated the biological and molecular mechanisms underlying the anti-obesity effect of EC in high-fat diet (HFD)-fed obese mice. C57BL/6N mice were fed an HFD (40 kcal% fat) with or without 0.005% (w/w) EC for 16 weeks. Dietary EC improved adiposity by increasing adipocyte fatty acid (FA) oxidation, energy expenditure, and mRNA expression of thermogenesis-related genes in brown adipose tissue (BAT) and skeletal muscle, whereas it also decreased lipogenesis-related gene expression in white adipose tissue. In addition to adiposity, EC prevented hepatic steatosis by diminishing lipogenesis while enhancing FA oxidation in the liver and fecal lipid excretion, which was linked to attenuation of hyperlipidemia. Moreover, EC improved insulin sensitivity by decreasing hepatic gluconeogenesis and proinflammatory responses. These findings indicate that EC may protect against diet-induced adiposity and related metabolic disorders by controlling thermogenesis of BAT and skeletal muscle, FA oxidation, lipogenesis, fecal lipid excretion, glucose utilization, and gluconeogenesis.
KEYWORD
adiposity, energy expenditure, eriocitrin, fatty acid oxidation, insulin resistance, NAFLD
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)